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The propagation of acoustic waves along a duct of elliptic cross-section, the eccentricity of
which varies slowly along the axis, is considered as a model of the unsteady #ow inside
a realistic aeroengine nacelle. This is a development of recent work on a circular duct by
Rienstra. The acoustic "eld at each axial location is expanded in terms of the local even and
odd Mathieu modes, and the slow variation of the axial wavenumber and the modal
amplitude along the duct are determined as part of the solution. The duct eccentricity is seen
to have a very signi"cant e!ect right across the range of practical azimuthal orders, and has
di!erent e!ects on the even and odd modes. For instance, the point at which a given mode
changes from being cut-on to cut-o! depends on the eccentricity; for even modes, and for the
odd modes apart from at a very low frequency, the eccentricity makes modes more cut-on
than in a circular duct. Even for cases in which a given mode is cut-on all along the duct
according to standard circular duct theory, the modal amplitude is seen to depend strongly
on the cross-sectional eccentricity. In a representative case the amplitude of a high order
mode propagating upstream along a slowly varying elliptical duct is seen to be signi"cantly
lower than that of the equivalent mode propagating in a circular duct of the same
cross-sectional area.
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1. INTRODUCTION

The understanding of the way in which acoustic waves propagate along the nacelle is
a central feature of the prediction of the noise generated by aeroengines. Classical analysis
has typically assumed that the duct has a circular cross-section which is uniform along its
axis, leading to a model structure involving Bessel functions*see for instance reference [1].
However, on very large aeroengines the intakes are not axisymmetric, because ground
clearance requirements mean that the nacelle is often &&squashed'' in the vertical direction.
Moreover, the cross-section will vary along the axis, being typically circular at the fan face
but becoming non-axisymmetric further upstream. There is therefore a practical need to
predict the e!ects of nacelle asymmetry and axial variation on the sound inside the nacelle,
and the aim of this paper is to complete the analysis of a realistic model problem which
includes both these features. Speci"cally, a duct with (for de"niteness) elliptic cross-section,
the eccentricity of which varies along the axis, is considered.

There has been considerable early interest in the acoustics of elliptic jets*see, for
example, references [2}4]. This analysis essentially involves solution of the Helmholtz
equation (or of a modi"ed equation to account for non-uniform axial #ow) in elliptic
co-ordinates, which in turn is completed by these authors in terms of Mathieu functions [5].
Exactly the same style of analysis will be used in the present elliptic duct problem. On the
other hand, the problem of a circular duct with slow axial variation in its radius has been
0022-460X/01/230381#21 $35.00/0 ( 2001 Academic Press
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considered by Nayfeh and others [6, 7], but recently a fully analytical solution has been
derived by Rienstra [8] using the multiple-scales technique*see reference [9]. Speci"cally,
a slow axial scale X"ex is introduced, where e@1 and x is the conventional axial
co-ordinate. The small parameter e can be de"ned to be, for instance, the mean gradient of
the outer nacelle wall in the axial direction. This approximation of relatively slow variation
in nacelle geometry along the axis is a good one in practice*see reference [10] for an
impressive comparison between the asymptotics and a fully numerical solution. In this
paper, we therefore propose to unify these two di!erent strands of work by considering
a slowly varying duct with elliptic cross-section. For practical relevance, we insist that the
duct carries a (subsonic) steady #ow, which must necessarily itself vary along the axis due to
the shape changes and which must be found as a part of our solution.

Duct mode propagation is crucial to at least two areas of aeroengine behaviour. First, it is
related to the far"eld noise; radiation from the fan propagates upstream in the form of duct
modes, and is then radiated from the open end of the duct*see references [11, 12]. The
azimuthal order, m, of the duct modes which radiate is typically rather large, and depends
on the number of blades in the fan, so that m would be expected to be in the range 20}30.
Second, duct-mode propagation is related to fan instability; it has recently been shown [13]
that acoustic modes can be trapped by area variations ahead of the fan and swirl behind the
fan, leading to possible fan excitation, and these instabilities tend to occur for low azimuthal
orders, typically m)6. In order to demonstrate the possible relevance of the e!ects of an
elliptic intake on both the noise and the mode trapping, the results for a wide range of
azimuthal orders will therefore be presented.

In order to "t the duct geometry a modi"ed elliptic}cylindrical co-ordinate system is
used, in which the eccentricity varies along the axis. Since this is a non-orthogonal system,
some care must be taken in deriving the various di!erential operators. This is described in
section 2, together with the governing equations. In section 3, the solution of these
equations is described, very much along the lines set out by Rienstra [8] for the circular
duct. First, the steady #ow is determined, which in the asymptotic limit considered here is
governed by one-dimensional gas dynamics. Second, the O(1) approximation to the
unsteady #ow is determined, which provides the local modal structure of the acoustic "eld
in terms of Mathieu functions*unlike the circular case, there are now two quite distinct
families of modes, one even about the ellipse semi-major axis and the other odd. The
variation in the axial wavenumber along the duct is also provided at this order, showing at
what points (if any) the modes can change from propagating (cut-on) to evanescent (cut-o!).
Finally, the O(e) correction to the unsteady #ow is considered, which provides a secularity
condition to determine the variation of the leading order modal amplitudes. In section 4,
results for a realistic intake are presented, for both the cut-on/cut-o! behaviour of the
modes and the variation in amplitudes along the duct, and it is seen that both are
signi"cantly a!ected by the duct asymmetry. It can therefore be concluded that classical
circular duct theory must be inapplicable in a range of important practical situations.

2. PROBLEM FORMULATION

2.1. GEOMETRY

Consider a straight duct with axis aligned along the x direction. The cross-section of the
duct is elliptical, but it will be supposed that the eccentricity, e, at each cross-section varies
with axial location. A crucial assumption in what follows is that the duct varies only slowly
along the axis, so a small parameter e is introduced; later a slow co-ordinate X"ex will be
used to describe the variation of the geometry along the axis, but for now the eccentricity is
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written simply as e"e(ex). It will prove particularly convenient to consider a co-ordinate
system comprising x together with elliptic co-ordinates in the perpendicular plane; in other
words, take Cartesian co-ordinates (x, y, z), with

y"e(ex) cosh o cos h, z"e (ex) sinho sin h. (1)

Here, o, h are analogous to the more usual polar radius and angle in circular polar
co-ordinates. If the eccentricity were independent of x then the co-ordinates would simply
be standard, orthogonal elliptic cylindrical co-ordinates [15, p. 139]. A drawback to this
co-ordinate system for general e(ex), however, is that it is non-orthogonal, and some care will
therefore have to be exercised when calculating the various vector di!erential operators
required subsequently. With this in mind, standard methods in di!erential geometry are
followed (see e.g., reference [14]); for a general set of co-ordinates q
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is the usual metric element in conventional elliptical co-ordinates (see e.g., reference
[5, p. 172]. The terms g
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will be seen that they are not required subsequently.
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where / is the unsteady velocity potential and U is the steady #uid velocity. The gradient
term is straightforward, with
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where eo, eh, e
x

are the unit vectors in the o and h directions (i.e., in the plane transverse to
the axis) and in the x (axial) direction respectively. (See reference [14 equation (5.52)], but
note that there the vector components are not measured with respect to unit vectors,
necessitating the introduction of the factors 1/Jg

11
, etc., in equation (5).) From equation (3)
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"ho , and since in subsequent analysis terms of size O(e2) will be disregarded,

it follows that g
33

can be taken to be unity. Hence, the usual formula for $/ in orthogonal
curvilinear co-ordinates [15, p. 148] can be applied to the non-orthogonal system to the
asymptotic order required. The formula for the divergence of a vector with components
;
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(Note that the result from reference [14] again requires inclusion of factors 1/Jg
11

, etc., in
order to account for unit base vectors, and also requires that the sign of det(g) to be changed
in order to suppress the time-like dimension included in reference [14].) It is easy to show
from equation (3) that det(g)"h4o#O(e2), and this means that once again the general result
(6) reduces to the standard result for divergence in orthogonal co-ordinates [15, p. 150], to
the asymptotic order required, i.e.,

$ )U"
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h2o G
L(ho;o)

Lo
#

L(ho;h)
Lh

#

L(h2o;x
)

Lx H#O(e2), (7)

where ;o, ;h, ;x
are components relative to the unit vectors in the o, h, x directions

respectively. It must be emphasized, however, that this result is by no means obvious
a priori, and it is only the slowly varying nature of the duct geometry which has allowed the
replacement of the general non-orthogonal results (5) and (6) by the usual expressions in an
orthogonal co-ordinate system.

The duct walls will be described by the equations o"o
2

(outer wall) and o"o
1

(inner
wall), with of course o

2
'o

1
. The assumption of slow geometry variation in the axial

direction means that o
1,2

are functions of only the slow variable X"ex. The limit in which
the duct cross-section changes from elliptic to circular along its length will be particularly
interesting, and from equation (1) it is clear that this can be achieved by sending eP0,
oPR; speci"cally, if the outer duct wall is to become circular with radius R

2
at X"¸, say,

then eP0 and o
2
&ln(2R

2
/e) as XP¸.

2.2. GOVERNING EQUATIONS

The governing equations to be applied here are identical to those used in reference [8]
and are included for completeness. As far as possible the same notation as in reference [8] is
used. Lengths are non-dimensionalized by a length-scale of the duct (say axial mean outer
radius), R

=
, speeds by a reference sound speed c

=
, and densities by a reference steady

density o
=
. The steady base #ow through the duct satis"es mass conservation,

$ ) (DV)"0, (8)

where D is the steady density and V is the steady #uid velocity. A crucial assumption in this
analysis is that V is irrotational, which will allow the vortical and acoustical parts of the
unsteady #ow to be decoupled. Further, it will be assumed that the steady #ow is the
isentropic #ow of an ideal gas, so that one has Bernoulli's equation

1

2
DVD2#

C2

c!1
"E, (9)

where the steady sound speed C is related to the density by the isentropic relation
C2"Dc~1, c is the usual adiabatic index and E is a constant.

The unsteady #ow through the duct will be assumed to be a small, linear perturbation on
top of the steady base #ow. Consider single-frequency motion, and write the acoustic
potential as / exp(!iut) (note that this is the opposite sign convention to that of reference
[8]). It can then be shown that / satis"es the convected wave equation (see reference
[8, equation (4.1a)]

$ ) (D$/)!D(!iu#V )$) G
1

C2
(!iu#V )$ )/H"0. (10)
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Note how the coe$cients in this equation depend on the properties of the steady #ow,
which will in turn depend on spatial (and in particular axial) location.

The boundary conditions to be applied are also the same as in reference [8]. The steady
#ow will be required to satisfy zero normal velocity on the duct walls, so that

V ) n"0 on o"o
1,2

. (11)

Here, n
1,2

are the unit normals to the walls pointing out of the #uid, and are therefore
parallel to the vectors + (o!o

1,2
(ex)). By using equation (5) it is easy to see that
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with the G referring to the inner and outer walls, respectively, and @ denoting
di!erentiation with respect to argument. The boundary condition to be satis"ed by the
unsteady "eld will depend on the assumed impedance of the walls: if it is supposed that the
inner and outer walls are both rigid, then the zero normal-velocity condition n )$/"0 is
applicable. With "nite wall impedance, the condition formulated by Myers [16] need to be
applied*as stated in reference [8] this takes the form
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on o"o
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(ex) respectively. Here Z
1,2

"Z
1,2

(ex) are the inner and outer wall impedances.
This boundary condition has been applied successfully by Rienstra [8] to circular ducts
with lined walls. However, for an elliptical duct there turns out to be a fundamental
mathematical di$culty, because with "nite non-zero Z

1,2
equation (13) is non-separable in

o and h, essentially due to the form of ho . It is only for the rigid-walled case (Z
1,2

PR), and
for the practically unimportant pressure-release case (Z

1,2
P0), that equation (13) permits

a separable solution for /. In what follows only the rigid-wall condition will therefore be
considered*inclusion of "nite Z

1,2
would necessitate inclusion of a whole spectrum of

coupled modes, which would introduce considerable complexity at this stage. Further work
will examine the e!ects of lining in elliptical ducts.

3. SOLUTION

The solution will be obtained exactly as in reference [8], by the method of multiple scales.
The slow axial variable X"ex has already been introduced, and L/Lx is thereby replaced
by L/Lx#e L/LX. The geometry parameters (i.e., e, o

1,2
) are all functions of X only.

3.1. STEADY FLOW

In reference [8] the steady #ow along the slowly varying duct was seen to be governed by
one-dimensional gas dynamics, and it is therefore to be expected that the steady solution in
the present case will take very much the same form. Write the steady #ow as

V"; (X, o, h)e
x
#<(X, o, h)eo#=(X, o, h)eh . (14)

The cross-sectional mass #ux is

P
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where F must be constant. Expansion of the steady #ow equations gives, exactly as in
reference [8], that

;";
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Equations (15) and (21) can now be solved for;
0
(X) and D

0
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the circular limit (o
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) then Rienstra's equation (3.2) is
regained identically. The transverse velocity components<

1
and=

1
must be determined by

using the O(e) mass condition, together with the O(e2) term in the equation $]V"0 and
the O(e) steady boundary condition. It seems that this can only be completed numerically,
but in any event analytical expressions for <

1
and =

1
are not required in subsequent

analysis, and one need not pursue this point further.

3.2. UNSTEADY FLOW, LEADING ORDER

To start the unsteady analysis / is written in the standard WKB form used in reference
[8], i.e.,

/(o, h, x, X)"[A
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where the unknown phase k(X) and amplitudes A
0,1,2

will be determined as part of the
solution. Substituting equation (23) into equation (10) and taking O(1) terms yields
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where X"u!k;
0
. Equation (24) can be solved in terms of Mathieu functions by the

method of separation of variables in the transverse co-ordinates.
Upon writing A

0
(o, h; X)"R(o; X)H(h; X), it is found that
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where a is a separation constant, primes denote di!erentiation with respect to the "rst
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In order to obtain solutions which are periodic in h, it is well-known [5, chapter 2] that
a must take one of a discrete (but in"nite) set of values, and that once this has been done two
distinct sets of solutions are possible, one set which are even about the ellipse major axis
(h"0), and another which are odd. In fact, these two general sets of solutions are written as

[M
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m
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m
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and
[M

m
(X)Se

m
(o, q)#N

m
(X)Ge

m
(o, q)]se
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(h, q), (28)

respectively, where m"0, 1,
2

labels the value of a chosen to obtain periodicity in h. The
functions ce
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(h, q) are Mathieu functions, and are analogous to cos h and sin h,

respectively, while Ce
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functions, and are analogous to Bessel functions. The factors M
m
(X), N

m
(X) are at this stage

arbitrary, but their variation in X will be determined from the solvability condition in the
next subsection. Given the linearity of the problem, arbitrary linear combinations of modes
can be considered by superposition of the results presented here.

The O(1) form of the boundary condition (13) to be applied on o"o
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is simply
LA

0
/Lo"0, and substituting equations (27) and (28) into this condition yields the

dispersion relation for non-trivial solutions; for the even solution from equation (27)
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while for the odd solutions from equation (28)
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For given o
1,2

(X) and m, these two transcendental equations are to be solved for q*in fact
there will be an in"nite discrete spectrum of values of q, which are entirely equivalent to the
in"nite spectrum of radial modes present for a circular duct. Once possible values of q(X)
have been determined, the unknown axial wavenumber k(X) can be found by solving
equation (26).

Some simpli"cation is possible if a hollow duct is considered by neglecting the terms
involving o

1
; in that case the two solution sets are found by simply taking the "rst terms in

equations (27) and (28), and the dispersion relations (29) and (30) become
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3.3. UNSTEADY FLOW, FIRST ORDER

Now consider terms of size O(e) in order to derive a solvability condition for the
amplitude A

0
. Substituting equation (23) into equation (10) and taking O(e) terms yields the
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where some simpli"cation on the right-hand side has been obtained by using the O(e) part of
the steady #ow continuity equation (8). The O(e) terms in the unsteady normal velocity
boundary condition yield
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Now proceed as in reference [8] by multiplying equation (33) by A
0

and integrating over
o
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(o(o

2
, 0(h(2n. After some algebra, and making use of the periodicity of A
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in h,

the exact result is obtained in the closed form
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which is the equivalent of the main result in reference [8] (equation 4.10 there). The solution
of the problem can now be completed by integrating equation (35) exactly (with constant of
integration Q2

0
), and it is found that for the even modes
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2
, q). The integral I can be split into a number of

terms, each of which involves an integral in h multiplied by an integral in o. Some of these
integrals can be evaluated in closed form by using results from reference [5, p. 177], but no
formulae seem to be available for the rest, which must instead be evaluated numerically. In
the case of a hollow duct the result simpli"es somewhat, with
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for the even modes (27), where now
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Once again, it does not seem possible to write I completely in closed form. For the odd
modes, results which are entirely equivalent to equations (36}39) can easily be derived; for
instance, for the odd modes in a hollow duct, one can simply replace Ce

m
and ce

m
by Se

m
and

se
m

in equation (39) respectively.

4. RESULTS

The following representative test case is chosen. Consider "rst the slowly varying hollow
circular duct with radius

R
2
(X)"1)4046!0)2592A1!

X

¸B
2
#0)1427 expA!

11X

¸ B (40)

(0)X)¸, ¸"2)62), which is the outer radius of the duct used by Rienstra [8] and is itself
based on the CFM56 engine nacelle. The local cross-sections of this intake are now
distorted into ellipses, with semi-major and -minor axes R

y
(X)"e(X) cosh(o

2
(X)) and

R
z
(X)"e(X) sinh(o

2
(X)), respectively, in such a way that the cross-sectional area is

unchanged. This "nal requirement leads to the relation
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Figure 1. Geometry of the slowly varying elliptic duct.
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It is hoped that using an elliptic cross-section with the same area as the original circular
cross-section will provide a meaningful appraisal of the e!ects of non-zero eccentricity. The
variation in the eccentricity with axial location is taken to be linear, with e(0)"0)85 and
e(¸)"0, so that the duct cross-section is most elliptic at X"0, and is circular at X"¸

which can be thought of as the location of the fan (see Figure 1). With e(X) and R
2
(X)

speci"ed equation (41) can be used to obtain the variation of o
2

along the axis. The
variations of e, o

2
and R

z,y
with axial location are shown in Figure 2.

The dispersion relations given in equations (31) and (32) were solved to "nd the values of
q for the even and odd modes, respectively, and for m in the range 2}26, as follows. For
a given value of q and azimuthal order m, the corresponding value of the separation
constant a in equation (25) can be determined by using an eigenvalue solver developed
speci"cally for the Mathieu equation [17], and equations (31) and (32) then solved for q by
using Newton iteration. For given q and a the eigenfunction ce

m
(h, q), or se

m
(h, q), can then

be determined by using the power series expansions in section 2.17 of reference [5], while
the eigenfunction Ce

m
(o, q), or Se

m
(o, q), is found either in the same way or (especially close

to modal cut-o!) by directly integrating the ODE (25a) using initial conditions at o"0
speci"ed by the power series in reference [5].

Figure 3 shows the values of q obtained from m"2 and the "rst radial order (i.e., the
lowest value of q from the spectrum of separation constants a in equation 25). It can be seen
that, for both odd and even modes, q takes its maximum value at X"0 where the duct is
most elliptical, and decays to zero when the duct becomes circular at x"¸ (the fact that
qP0 as eP0 can be seen from equation (26)). The di!erences between the odd and even
results were most marked for m"2 where the odd values of q exceed the even ones. For the
duct shape given in equation (40) it was found that the values of q for the odd and even
modes become coincident when m'6. These results can be compared to the circular duct
de"ned in equation (40) by considering the variation of 2Jq/e, which is analogous to the
radial wavenumber for a circular duct. Figure 4 shows that the radial wavenumber of the
circular duct lies between the corresponding odd and even results, and all three approach
the same value as the duct becomes more circular.

With the values of q determined, the axial wavenumber k(X) can be found from equation
(26). Here the reduced axial wavenumber, p(X), is calculated which is proportional to the
factor C2

0
k#X;

0
in the denominator of equation (38) and is de"ned as

p (X)"S1!
C2

0
(X)

u2
[1!M2

x
(X)]

4q(X)

e2(X)
, (42)



Figure 2. Variation of de"ning duct parameters with axial location X. (a) Eccentricity e, with e (0)"0)85, (b)
variation in o

2
, with o

2
PR as XP¸. (c) Major (R

y
) and minor (R

z
) radii of elliptical duct for eccentricity pro"le

given in (a). Also shown is the radius R
2

of the circular duct with the same cross-sectional area at each axial
location.
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where M
x
";

0
/C

0
is the steady axial Mach number. When a mode is cut on p is purely

real, and when the mode is cut o! p is purely imaginary.
The variation in p along the duct, when m"2 and u"2)1, is given in Figure 5 where

comparison is also made with the circular duct (40). It is evident that signi"cant di!erences
in the cut-on/cut-o! nature arise between the odd and even modes of the elliptical duct and
the circular duct modes. In all cases the slow-variation in the duct cross-section gives rise to
a turning point where a mode changes from being cut-on to cut-o!. The odd mode gives
similar results to the circular duct mode in that it exhibits a single turning point, but the odd
mode becomes cut-on slightly further downstream. The even mode, however, produces two
turning points and is cut-on at the upstream end of the duct. This general trend is found for
other values of m. Both the odd and even modes and the circular duct mode "rst cut-on at
the circular end of the duct (at the same frequency), and as the frequency is increased a single
turning point occurs upstream. As the frequency is increased further the modes become
cut-on at the upstream end of the duct, giving rise to a second turning point. Eventually,
the two turning points coincide and the modes become cut-on along the entire length



Figure 3. Values of q satisfying the dispersion relation in equation (31) for the even modes (solid line) and
equation (32) for the odd modes (dashed line) when m"2.

Figure 4. Comparison between radial wavenumber (m"2, "rst order) for the circular duct (thin solid line) and
the corresponding values for the even (thick solid line) and odd (dashed line) modes.
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Figure 5. Reduced axial wavenumber p for m"2, u"2)1 for "rst radial order even modes (thick solid
lines) and odd modes (dashed lines) of elliptical duct and mode for circular duct (thin solid lines). (a) Re(p),
(b) Im(p).
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of the duct. For mode numbers m(6, as the frequency is increased two turning points "rst
occur for the even modes, followed by the circular duct modes and then "nally for the odd
modes of the elliptical duct. This can be seen in Figure 6(a) where the frequency ranges for
one and two turning points are shown. As m is increased the even and odd modes become
equivalent, with complete cut-on all along the duct occurring at lower frequencies than that
for the circular duct. Figure 6 shows the frequency ranges for which the di!erent
cut-on/cut-o! characteristics occur for selected values of m in the range 2}26. For each
value of m the frequency ranges are plotted on the same scale, showing that turning points
occur over increasingly wider frequency ranges as the value of m gets larger. These
frequency ranges coincide for the even and odd modes at larger m, but are di!erent from
those of the equivalent circular duct. In summary, for the larger values of m the non-zero
eccentricity has the e!ect of tending to make both the even and the odd modes more cut-on
than they would be in the circular duct.

A comparison between modes of di!erent radial order is made in Figure 7 for m"2.
Again the frequency ranges for each plot are on the same scale so that, for all mode types,
the di!erence between the frequency at which the mode "rst cuts on and that where the
mode becomes completely cut-on increases with radial order. The trends in the



Figure 6. Frequency ranges for which modes ("rst radial order) exhibit a single turning point (black) and two
turning points (grey). Frequencies to the right of the grey regions give rise to modes which are cut-on along the
whole length of the duct. (a) m"2, (b) 3, (c) 4, (d) 6, (e) 12 and (f ) 26.
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cut-on/cut-o! behaviour between the odd and even modes and the modes for the circular
duct observed for the "rst radial order are also followed for higher radial orders.

The e!ect of making the duct more eccentric is shown in Figure 8, where ducts with
e(0)"0)85 and 1)5 are compared. The increase in eccentricity is found to have a pronounced
e!ect on the even modes, which now "rst cut-on at the upstream end of the duct but become
cut-o! further downstream. As a result of this the mode becomes completely cut-on at
a much lower frequency when e(0)"1)5 compared to when e (0)"0)85. The general
behaviour of the odd modes remains the same in both cases except that the frequency range
for which turning points arise is extended.



Figure 7. Comparison between modes of di!erent radial order for m"2. (a) First radial order, (b) second radial
order, (c) third radial order. Colour coding is the same as in Figure 6.
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Figure 9. Cross-sectionally averaged amplitudes AM for m"2, u"2)1, for the "rst radial order even mode (thick
solid line), odd mode (dashed line) and circular-duct mode (thin solid line).
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The cross-sectionally averaged amplitude of the eigenmodes is de"ned by

AM (X)"C P
2n

0
P

o2

0

DA
0
(o, h, X)D2h2o dhdoD

1@2
, (43)

which, upon using equations (38) and (39), becomes

AM (X)"
Q

0
C1@2

0
(uD

0
)1@2 K

1

p1@2 K , (44)

since p"[C2
0
k#X;

0
]/(uC

0
). This expression breaks down in the vicinity of a turning

point, where p"0, and a local analysis must be carried out in order to determine the inner
solution in terms of Airy functions. This inner analysis proceeds exactly in the same way as
described in reference [18] for the circular duct. One crucial result of the inner analysis is
the re#ection coe$cient of a cut-on wave when it hits the turning point. For a circular duct
it is shown in reference [18] that the re#ection coe$cient is exp(in/2), and it is possible to
verify that this is also the value for the present elliptical duct. This means that the analysis of
mode trapping in a circular duct described in reference [13] could be repeated for an
elliptical duct using the theory described in this paper. Figure 9 compares the averaged
amplitude for the m"2, u"2)1 results, normalized to unity at X"¸. The singular
behaviour in this plot indicates the position of the turning points in each case. By forming
a composite asymptotic expansion between the outer solution described in this paper and
b
Figure 8. Comparison of "rst order radial modes with changing eccentricity for m"2. (a) e(0)"0)85, (b)

e(0)"1)5. Colour coding is the same as in Figure 6 with the white region representing the case of cut-on at the
upstream end of the duct, a turning point at some location downstream, and cut-o! at the circular end of the duct.



Figure 10. Variation in the modulus of amplitude A
0
(o, h, X) at h"n/4, for m"26, u"20)2 for the "rst radial

mode. (a) Even-mode amplitude, (b) odd-mode amplitude. Amplitudes are normalized to unity at X"0, o"o
2
.

396 N. PEAKE AND A. J. COOPER
the inner Airy solution a uniformly valid solution which smooths out the singularities seen
in Figure 9 could be derived. This composite expansion is given in reference [19] for
a circular duct, and the extension to the present elliptical case is straightforward.

The amplitude variation along and across the duct can be determined by using equation
(38) with the appropriate form of the integral I. In Figure 10, the variation of DA

0
(o, h, X)D is

plotted along the duct at the representative azimuthal location h"n/4. When m"26 it was
shown in Figure 6 that the cut-on/cut-o! behaviour is the same for the odd and even modes,
but Figure 10 shows that the amplitude variations associated with these modes di!er
substantially. For the frequency used in Figure 10 both the odd and even modes are cut-on
all the way along the duct. The modulus of the amplitude for both modes is zero along the
centreline o"0, and is close to zero over an increasingly wide range of values of o as the
duct becomes more circular. For a given axial location, both amplitudes have their
maximum value on the outer wall. Although the modes are scaled to have unit amplitude at
X"0, it is noted that the odd mode is signi"cantly larger as the duct becomes circular, and
indeed has passed through higher amplitudes along the duct, than the even mode. In Figure
11, the variation in the cross-sectionally averaged amplitude, AM (X), is plotted for the same



Figure 11. Variation of the cross-sectionally averaged modal amplitude. Conditions as in Figure 10. Circular
duct mode (dashed line), even mode (solid line).
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case as considered in Figure 10, now with the average amplitudes normalized to unity at the
circular end X"¸. The di!erence between the behaviour in the elliptic duct and the
equivalent circular duct is clear. In the elliptic duct the cross-sectional averages of the odd
and even modes are identical for this large value of m, even though, as can be seen in Figure
10, the modal variation with radial coordinate o are quite di!erent for a "xed value of h. It is
interesting to note that application of standard circular duct theory would in this case
overestimate the averaged modal amplitude all along the duct. A typical methodology for
predicting fan far"eld noise might well involve predicting the amplitude of a given duct
mode launched from the fan once it has reached the nacelle lip, and then use standard
di!raction theory for the scattering to the far "eld. In this case, it follows that the use of
circular duct theory would result in a signi"cant error in predicting the energy radiated to
the far "eld.

Finally, one can consider in more detail the azimuthal structure of the elliptical duct
modes. In Figures 12 and 13, the modal amplitudes DCe

m
(o, q)ce

m
(h, q)D and DSe

m
(o, q)se

m
(h, q)D

are plotted for m"2 and 26 respectively. For low values of m these mode shapes are
relatively #at, with just narrow localized regions of small amplitude. However, for larger
m the modes only have signi"cant amplitude towards the outside of the duct, and have
relatively small amplitude for smaller o. The azimuthal distribution of the modes is
determined by the values of m, with the number of lobes in these modulus plots being 2m. In
short, the structure of the elliptical duct modes is similar to that of standard circular duct
modes, but of course "tted to the elliptical geometry. A very attractive way of describing the
structure of the modes in a circular duct is provided by high-frequency asymptotics and ray
theory, as in reference [20]. This approach is rather di!erent to the one adopted in this
paper, but the ray theory could in principle be applied to our present duct as well (see for
instance reference [21]). One di$culty with following the approach described in reference
[20] might be the fact that large-argument/large-order asymptotic expansions of the



Figure 12. Cross-sectional variation of (a) DCe
m
(o, q)ce

m
(h, q)D and (b) DSe

m
(o, q)se

m
(h, q)D for m"2. Plots made at

X"0, other conditions as in Figure 9.
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Mathieu function, analogous to the Debye expansion of the Bessel function, do not seem to
be so readily available.

5. CONCLUDING REMARKS

In this paper, it has been demonstrated that the propagation of acoustic modes in
a realistic aeroengine duct is strongly a!ected by the local cross-sectional shape of the duct.
Moreover, these e!ects are signi"cant over the whole range of practical azimuthal orders,
from the low order modes relevant to the dynamic response of the fan right up to the high



Figure 13. As in Figure 12, but now with m"26 and other conditions as in Figure 10.
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order modes associated with the far"eld radiation. It is also particularly noteworthy that
the behaviours of the odd and even modes in the elliptic duct are quite di!erent; even for the
higher azimuthal orders, while the cut-on properties and cross-sectionally averaged
amplitudes are almost identical, the radial variations of the even and odd modes are very
di!erent (see Figure 10). One trend which is clearly apparent from the results is that the
non-zero eccentricity of the duct causes the even elliptic modes to become more cut-on than
they would have been in the equivalent circular duct. This could be of some practical
concern if one were in a situation in which a given mode was only just cut-o!, and would
therefore not radiate to the far "eld, according to standard circular-duct theory, since the
asymmetry in the real nacelle could then cause it to be cut-on, with a corresponding increase
in far"eld noise.
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Two extensions of the current analysis are needed for full practical application. One
involves the consideration of more general cross-sectional shapes, still with slow axial
variation. This would presumably require numerical determination of the axial eigenvalue
spectrum at each axial location, but it may well still be possible to determine the amplitude
variation along the duct in the way described here. A second extension involves the
inclusion of acoustic liners. It has already been noted that the wall normal velocity
boundary condition is non-separable, so that a given mode could be scattered into modes of
other radial and circumferential orders. Also, inclusion of the liner would introduce
complex axial wavenumbers and hence Mathieu functions of complex argument, which
appear to have received little attention in the literature. Work in these directions will
continue.
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